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1. Solve the initial value problem
d4u

dt4 + d2u

dt2 = e−t,

u(0) = du

dt
(0) = d2u

dt2 (0) = d3u

dt3 (0) = 0.

2. Consider the complex function
F (z) = z + 1

z4 + 5z2 + 4 .

(a) Compute the inverse Laplace transform of F using the integral formula (you can also verify
that you got the correct result by alternatively computing the inverse Laplace transform
using the properties of L[·] and Laplace transforms of known examples).

(b) Restricting F on R (i.e. think of F as a function from R to C), compute the inverse Fourier
transform of F .

3. For the functions f : [0, 1] → R given below, compute its expansion into a Fourier series

f(x) = 1
2a0 +

∑
nN\{0}

(an cos(2πnx) + bn sin(2πnx)) .

(a) f(x) = sin2(2πx),
(b) f(x) = x sin(2πx),
(c) f(x) = e−x.

4. Consider the initial value problem for the modified heat equation on x ∈ [0, 1] for some a ∈ R

with Dirichlet conditions:

∂u

∂t
(x, t) − ∂2u

∂x2 (x, t) − au(x, t) = e−2x for t > 0, x ∈ (0, 1),

u(x, 0) = 0,

u(0, t) = u(1, t) = 0 for t > 0.

Find an expression for the solution u.
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5. Let us consider the same initial value problem as in Exercise 4 but with Neumann boundary
conditions instead (in the case of the heat equation, these model an insulated endpoint):

∂u

∂t
(x, t) − ∂2u

∂x2 (x, t) − au(x, t) = e−2x for t > 0, x ∈ (0, 1),

u(x, 0) = 0,

∂u

∂x
(0, t) = ∂u

∂x
(1, t) = 0 for t > 0.

Find an expression for the solution u. (Hint: You might want to extend your functions as even
2-periodic functions in x before decomposing in Fourier modes.)

6 (Extra). The n-moment of a function f : [0, +∞) → C is defined by

µn =
� +∞

0
tnf(t) dt,

provided, of course, this integral converges. Show that, if all n-moments of f converge and

sup
n∈N

� +∞

0
tn|f(t)| dt < +∞,

then
L[f ](z) =

+∞∑
n=0

(−1)n

n! µnzn.

In particular, it follows form the above that L[f ](z) in this case extends holomorphically at
z = 0 and the moments of f can be calculated in terms of the coefficients of the Taylor expansion
of L[f ](z) at z = 0.

Solutions

Problem 1

Laplace Transform
We apply the Laplace transform to the differential equation. We denote the Laplace transform of a
function u(t) by L[u(t)](z) = U(z). The Laplace transforms of the derivatives are:

L
[

d4u

dt4

]
(s) = s4U(s) − s3u(0) − s2 du

dt
(0) − s

d2u

dt2 (0) − d3u

dt3 (0) = s4U(s),

L
[

d2u

dt2

]
= s2U(s) − su(0) − du

dt
(0) = s2U(s).
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The Laplace transform of e−t is:
L[e−t](s) = 1

s + 1 .

Substituting these into the differential equation, we get:

s4U(s) + s2U(s) = 1
s + 1 .

Factoring out U(s), we have:
U(s)(s4 + s2) = 1

s + 1 .

Solving for U(s), we get:

U(s) = 1
(s + 1)(s4 + s2) = 1

s2(s2 + 1)(s + 1) .

We decompose U(s) into partial fractions:

1
s2(s2 + 1)(s + 1) = A

s
+ B

s2 + Cs + D

s2 + 1 + E

s + 1 .

Multiplying both sides by the denominator s2(s2 + 1)(s + 1), we get:

1 = As(s2 + 1)(s + 1) + B(s2 + 1)(s + 1) + (Cs + D)s2(s + 1) + Es2(s2 + 1).

Expanding and combining like terms, we have:

1 = As4 + As3 + As2 + As + Bs3 + Bs2 + Bs + B + Cs4 + Cs3 + Ds3 + Ds2 + Es4 + Es2.

Grouping the terms by powers of s, we get:

1 = (A + C + E)s4 + (A + B + C + D)s3 + (A + B + D + E)s2 + (A + B)s + B.

Equating the coefficients of corresponding powers of s on both sides, we obtain the system of equa-
tions:

A + C + E = 0,

A + B + C + D = 0,

A + B + D + E = 0,

A + B = 0,

B = 1.

Solving this system, we find:

B = 1,

Page 3



EPFL– Spring 2025
Series 12 MATH 207(c)–Analysis IV

G. Moschidis
13 May 2025

A + 1 = 0 =⇒ A = −1,

−1 + C + E = 0 =⇒ C + E = 1,

−1 + 1 + C + D = 0 =⇒ C + D = 0,

−1 + 1 + D + E = 0 =⇒ D + E = 0.

From C + D = 0 and D + E = 0, we get C = −D and E = −D. Substituting C = −D into
C + E = 1, we get:

−D − D = 1 =⇒ −2D = 1 =⇒ D = −1
2 , C = −D = 1

2 , E = −D = 1
2 .

Thus, the partial fraction decomposition is:

U(s) = −1
s

+ 1
s2 +

1
2s − 1

2
s2 + 1 +

1
2

s + 1 = −1
s

+ 1
s2 + s − 1

2(s2 + 1) + 1
2(s + 1) .

We now find the inverse Laplace transform of each term:

L−1
[
−1

s

]
= −1,

L−1
[ 1
s2

]
= t,

L−1
[

s − 1
2(s2 + 1)

]
= 1

2

(
L−1

[
s

s2 + 1

]
− L−1

[ 1
s2 + 1

])
= 1

2(cos t − sin t),

L−1
[

1
2(s + 1)

]
= 1

2e−t.

Combining these, we get the solution:

u(t) = −1 + t + 1
2(cos t − sin t) + 1

2e−t.

Final Answer

u(t) = −1 + t + 1
2(cos t − sin t) + 1

2e−t

Problem 2

Part (a)
Given the function:

F (z) = z + 1
z4 + 5z2 + 4 ,
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the poles of F (z) are the roots of the denominator z4 + 5z2 + 4 = 0. Factoring, we get:

z4 + 5z2 + 4 = (z2 + 1)(z2 + 4)

So, the poles are z = ±i and z = ±2i. All of them are simple poles.
The inverse Laplace transform is given by the following integral (also known as Bromwich inte-

gral):

f(t) = L−1{F (z)} = 1
2πi

� γ+i∞

γ−i∞
eztF (z) dz,

where γ ∈ R is chosen such that all the singularities of F (z) lie to the left of the line Re(z) = γ. In
this case, we can choose any γ > 0.

As we have seen this class, the way to compute this integral is schematically as follows: In order
to compute

� γ+iR

γ−iR
eztF (z) dz as R → +∞, we close the loop using a half circle to the left (i.e. the

curve θ → Reiθ for θ ∈ [π
2 , 3π

2 ]), and then we compute the integral over the closed loop using the
reisdue theorem (note that this loop will contain, when R is large, all the poles of etzF (z)). As
R → +∞, the integral over the half circle goes to 0 (this is why we chose to close the loop on the
left, since etz is uniformly bounded in the region Re(z) ⩽ γ when t ⩾ 0), leaving us with

f(t) = L−1{F (z)} = 1
2πi

� γ+i∞

γ−i∞
eztF (z) dz =

∑
zk: poles of F

Resz=zk

(
etzF (z)

)
,

Residue Calculation

We calculate the residues at each pole.

• Residue at z = i:

Resz=i(eztF (z)) = lim
z→i

(z − i)ezt z + 1
(z2 + 1)(z2 + 4) = eit i + 1

(2i)(3) = eit(i + 1)
6i

• Residue at z = −i:

Resz=−i(eztF (z)) = lim
z→−i

(z + i)ezt z + 1
(z2 + 1)(z2 + 4) = e−it −i + 1

(−2i)(3) = e−it(i − 1)
6i

• Residue at z = 2i:

Resz=2i(eztF (z)) = lim
z→2i

(z − 2i)ezt z + 1
(z2 + 1)(z2 + 4) = e2it 2i + 1

(−3)(4i) = e2it(2i + 1)
−12i

• Residue at z = −2i:

Resz=−2i(eztF (z)) = lim
z→−2i

(z + 2i)ezt z + 1
(z2 + 1)(z2 + 4) = e−2it −2i + 1

(−3)(−4i) = e−2it(−2i + 1)
12i
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Summing the residues, we get:

f(t) =
(

eit(i + 1)
6i

+ e−it(i − 1)
6i

+ e2it(2i + 1)
−12i

+ e−2it(−2i + 1)
12i

)

Combining the terms and using Euler’s formula eiθ = cos(θ) + i sin(θ), we finally obtain:

f(t) = 1
3 cos t + 1

3 sin t − 1
3 cos 2t − 1

6 sin 2t

Part (b)
We compute the inverse Fourier transform of

F (ξ) = ξ + 1
(ξ2 + 1)(ξ2 + 4) ,

so
f(x) = 1√

2π

� +∞

−∞
eiξx ξ + 1

(ξ2 + 1)(ξ2 + 4) dξ.

The integrand
Gx(ξ) = eiξx ξ + 1

(ξ2 + 1)(ξ2 + 4)
has simple poles at ξ = ±i and ξ = ±2i.

We have seen how to compute the above integral before, as an application of the residue theorem.
We need to distinugish two cases, based on the sign of x:

• When x ⩾ 0, the function eixξ is bounded on the upper half plane Im(ξ) ⩾ 0. In this case,
in order to compute the integral

� +R

−R
eiξx ξ+1

(ξ2+1)(ξ2+4) dξ as R → +∞, we close the loop with
a half circle on the upper half plane, namely the half circle θ → Reiθ, θ ∈ [0, π]. This loop
is counter-clockwise oriented and will include only the poles at +i and +2i. So applying the
residue theorem (and using the fact that the integral over the half circle goes to 0 as R → +∞),
we get:

f(x) = 1√
2π

� +∞

−∞
Gx(ξ) dξ = 1√

2π
2πi (Resz=+i(Gx(z)) + Resz=+2i(Gx(z))) .

Computing the residues similarly as in the case of part (a), we obtain for x ⩾ 0:

f(x) =
√

2πi

(
e−x(i + 1)

6i
+ e−2x(2i + 1)

−12i

)
= 2π

(1 + i

6 e−x − 1 + 2i

12 e−2x
)

.

• When x < 0, the function eixξ is bounded on the lower half plane Im(ξ) ⩽ 0. In this case, in
order to compute the integral

� +R

−R
eiξx ξ+1

(ξ2+1)(ξ2+4) dξ as R → +∞, we close the loop with a half
circle on the lower half plane, namely following the half circle θ → Re−iθ, θ ∈ [0, π]. This loop
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is clockwise oriented and will include only the poles at −i and −2i. So applying the residue
theorem (and using the fact that the integral over the half circle goes to 0 as R → +∞), we
get (note the minus sign coming from the clockwise orientation):

f(x) = 1√
2π

� +∞

−∞
Gx(ξ) dξ = − 1√

2π
2πi (Resz=−i(Gx(z)) + Resz=−2i(Gx(z))) .

Computing the residues similarly as before, we obtain for x < 0 (note in this case x = −|x|):

f(x) = −
√

2πi

(
ex(i − 1)

6i
+ e2x(−2i + 1)

12i

)
= 2π

(1 − i

6 e−|x| + −1 + 2i

12 e−2|x|
)

.

So, overall:

F−1[F ](x) =
2π

(
1+i

6 e−x − 1+2i
12 e−2x

)
, x ⩾ 0,

2π
(

1−i
6 e−|x| − 1−2i

12 e−2|x|
)

, x ⩽ 0.

Problem 3
For each of the following functions f : [0, 1] → R, compute its Fourier series expansion in the form:

f(x) = 1
2a0 +

∑
n∈N\{0}

(an cos(2πnx) + bn sin(2πnx))

(a) f(x) = sin2(2πx)
Use the trigonometric identity:

sin2(2πx) = 1 − cos(4πx)
2

So, the Fourier series is:
f(x) = 1

2 − 1
2 cos(4πx)

Hence:
a0 = 1, a2 = −1, an = 0 for n ̸= 2, bn = 0 for all n

(b) f(x) = x sin(2πx)
We compute the Fourier coefficients:
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Cosine coefficients an: Using the identity:

sin A cos B = 1
2[sin(A + B) + sin(A − B)]

we compute:

an = 2
� 1

0
x sin(2πx) cos(2πnx) dx =

� 1

0
x [sin(2π(n + 1)x) + sin(2π(1 − n)x)] dx

Using: � 1

0
x sin(2πkx) dx = − 1

2πk

(which follows simply by integrating by parts in sin(2πkx) = − 1
2πk

d
dx

cos(2πkx)), we get:

an = − 1
π

( 1
n + 1 + 1

1 − n

)
= 2n

π(n2 − 1) for n ̸= 1

For n = 1:
a1 =

� 1

0
x sin(4πx) dx = − 1

4π

Sine coefficients bn: Using:

sin A sin B = 1
2[cos(A − B) − cos(A + B)]

we find:

bn = 2
� 1

0
x sin(2πx) sin(2πnx) dx =

� 1

0
x [cos(2π(n − 1)x) − cos(2π(n + 1)x)] dx

Since: � 1

0
x cos(2πkx) dx = 0 for integer k ̸= 0

we have bn = 0 for n ̸= 1. For n = 1:

b1 = 2
� 1

0
x sin2(2πx) dx =

� 1

0
x(1 − cos(4πx)) dx = 1

2

Final Fourier series for (b):

f(x) = x sin(2πx) = a0

2 +
∑
n⩾1

an cos(2πnx) + 1
2 sin(2πx)

with:
a1 = − 1

4π
, an = 2n

π(n2 − 1) for n ̸= 1, bn = 0 for n ̸= 1
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(c) f(x) = e−x

Zeroth coefficient:
a0 =

� 1

0
e−x dx = 1 − e−1

Cosine coefficients:
an = 2

� 1

0
e−x cos(2πnx) dx = 2(1 − e−1)

1 + (2πn)2

Sine coefficients:
bn = 2

� 1

0
e−x sin(2πnx) dx = 4πn(1 − e−1)

1 + (2πn)2

Final Fourier series for (c):

f(x) = 1 − e−1

2 +
∞∑

n=1

[
2(1 − e−1)
1 + (2πn)2 cos(2πnx) + 4πn(1 − e−1)

1 + (2πn)2 sin(2πnx)
]

Problem 4
Consider the initial value problem for the modified heat equation:

∂u

∂t
(x, t) − ∂2u

∂x2 (x, t) − au(x, t) = e−2x, t > 0, x ∈ (0, 1)
u(x, 0) = 0, x ∈ (0, 1)
u(0, t) = u(1, t) = 0, t > 0

Separation of Variables and Expansion
We seek a solution of the form:

u(x, t) =
∞∑

n=1
bn(t) sin (nπx)

(this form satisfies the homogeneous Dirichlet boundary conditions; the justification for seeking such
an expression, as usual, is that we extend our functions as odd, 2-periodic functions of x ∈ R, such
functions have only the sinuses terms present in the corresponding trigonometric expansion).

After extending the source term f(x) = e−2x as an odd, 2-periodic function of x, we expand it in
a sine series:

f(x) =
∞∑

n=1
fn sin (nπx) , fn = 2

� 1

0
e−2x sin (nπx) dx

The integral can be computedeasily, by integrating by parts twice:

fn = 2
� 1

0
e−2x sin(nπx) dx = 2πn

π2n2 + 4
(
1 − e−2 cos(πn)

)
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Substitute into the PDE
We substitute into the PDE:

∞∑
n=1

b′
n(t) sin (πnx) +

∞∑
n=1

bn(t)π2n2 sin (πnx) − a
∞∑

n=1
bn(t) sin (πnx) =

∞∑
n=1

fn sin(πnx)

This gives for each n:
b′

n(t) + (π2n2 − a)bn(t) = fn.

Recall also that, since our initial condition was u(x, 0) = 0, we have

bn(0) = 0.

Solving the above (and noting that fn is constant in t, since f was constant in t), we get

bn(t) =
� t

0
e−(π2n2−a)(t−s)fn ds = fn · 1 − e−(π2n2−a)t

π2n2 − a

Putting everything together:

u(x, t) =
∞∑

n=1

2πn

π2n2 + 4
(
1 − e−2 cos(πn)

)
· 1 − e−(π2n2−a)t

π2n2 − a
· sin (πnx)

Problem 5

Fourier Cosine Series Expansion
Since the boundary conditions are Neumann, we choose to extend our function u(x, t) and our source
term f(x) = e−2x as even, 2-periodic functions of x. This is because a C1, even and 2 periodic
function h(x) will automatically satisfy the Neumann boundary conditions h′(0) = 0 = h′(1). In this
case, the trigonometric expansion of those functions will only contain cosine terms:

u(x, t) = a0(t)
2 +

∞∑
n=1

an(t) cos (nπx)

(note that the basis elements, namely cos(nπx), automatically satisfy the Neumann conditions at
the boundary).

The source term f(x) = e−2x, when extended as above, is expanded in a cosine series as follows:

f(x) = f0

2 +
∞∑

n=1
fn cos

(
nπx

L

)

with coefficients:
fn = 2

� 1

0
e−2x cos (nπx) dx for n ⩾ 0.
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Using the series for u(x, t) and f(x), we substitute into the PDE and equate coefficients:

1
2 (a′

0(t) − aa0(t)) +
∞∑

n=1

(
a′

n(t) + (π2n2 − a)an(t)
)

cos (πnx) = f0

2 +
∞∑

n=1
fn cos (πnx) .

Equating the corresponding coeffieicents of cos(nπx) for any n ⩾ 0, we get

a′
n(t) + (π2n2 − a)an(t) = fn.

Since our initial condition is that u(x, 0) = 0, we have

an(0) = 0.

Solving the above first-order ODE, we get:

an(t) = fn

π2n2 − a

(
1 − e−(π2n2−a)t

)
.

Problem 6 (Extra)
The n-moment of a function f : [0, +∞) → C is defined by:

µn =
� ∞

0
tnf(t) dt,

provided this integral converges.
Assume that all n-moments of f converge and

sup
n∈N

� ∞

0
tn|f(t)| dt < +∞.

We aim to prove that:
L[f ](z) =

∞∑
n=0

(−1)n

n! µnzn.

The Laplace transform of f is defined as:

L[f ](z) =
� ∞

0
e−ztf(t) dt.

For any z ∈ C, the Taylor expansion of e−zt reads:

e−zt =
∞∑

n=0

(−z)ntn

n! .

Substituting the above expression in the Laplace transform, we get

L[f ](z) =
� +∞

0

+∞∑
n=0

(−z)n

n! tnf(t) dt.
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Interchanging the sum with the integral, we get

L[f ](z) =
+∞∑
n=0

� +∞

0

(−z)n

n! tnf(t) dt =
+∞∑
n=0

(−z)n

n!

� +∞

0
tnf(t) dt =

+∞∑
n=0

(−1)n

n! µnzn,

which is the required result.

Remark: The reason that we were able to exchange the sum and the integral was precisely our
assumption that

sup
n∈N

� ∞

0
tn|f(t)| dt < +∞.

This allows us to apply the so-called dominated convergence theorem. Moreover, in this case, since
supn µn < +∞, the series L[f ](z) = ∑+∞

n=0
(−1)n

n! µnzn has infinite radius of analyticity; therefore,
L[f ](z) is defined on the whole of the complex plane.
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