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1. Solve the initial value problem

du du_
dtt - de2
du d*u d3u
0)=—(0)=—=—=(0) = —(0) =0.
u(0) = S5(0) = 3 (0) = 2 (0)
2. Consider the complex function
F(z) = _ &+l
A 5244

(a) Compute the inverse Laplace transform of I using the integral formula (you can also verify
that you got the correct result by alternatively computing the inverse Laplace transform
using the properties of L[] and Laplace transforms of known examples).

(b) Restricting F' on R (i.e. think of F' as a function from R to C), compute the inverse Fourier
transform of F'.

3. For the functions f : [0,1] — R given below, compute its expansion into a Fourier series

flx) = ;ao + > (ancos(2mnz) + b, sin(2wnz)) .
nN\{0}
(a) f(z) = sin®(2mx),
(b) f(z) = xzsin(2nx),
(c) f(z) = e

4. Consider the initial value problem for the modified heat equation on x € [0, 1] for some a € R
with Dirichlet conditions:

ou 0%u oy
E(m,t)—@(x,t)—au(x,t)—e for t >0,z € (0,1),
u(z,0) =0,

u(0,t) =u(l,t) =0 for ¢t > 0.

Find an expression for the solution wu.
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5. Let us consider the same initial value problem as in Exercise 4 but with Neumann boundary
conditions instead (in the case of the heat equation, these model an insulated endpoint):

2
?;;(x,t) — g;;(x,t) —au(z,t) =e* for t >0,z € (0,1),
u(z,0) =0,

Ju ou

Find an expression for the solution u. (Hint: You might want to extend your functions as even
2-periodic functions in x before decomposing in Fourier modes.)

6 (Extra). The n-moment of a function f : [0, +00) — C is defined by

un:1£+mf7@>ﬁ,

provided, of course, this integral converges. Show that, if all n-moments of f converge and

+oo
sup/ t"|f(t)| dt < +oo,
0

then N
> (1)
e =y S
n=0

In particular, it follows form the above that £[f](z) in this case extends holomorphically at
z = 0 and the moments of f can be calculated in terms of the coefficients of the Taylor expansion

of L[f](z) at z =0.

Solutions

Problem 1

Laplace Transform

We apply the Laplace transform to the differential equation. We denote the Laplace transform of a
function u(t) by L[u(t)](z) = U(z). The Laplace transforms of the derivatives are:

L du d*u d*u

£ 5] 0) = £06) — o) - 2 210) — o) - D) = s

d*u ) o,
L [dtQ] =s°U(s) — su(0) — —(0) = s°U(s).
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The Laplace transform of e~¢ is:
1
¢ o

Substituting these into the differential equation, we get:

1
4 2
U U(s) = .
s*U(s) + s°U(s) poaE]
Factoring out U(s), we have:
1
U(s)(s* + s%) = ——.
(s)(s™ +s%) P
Solving for U(s), we get:
1 1

U(s) = =

(s+1)(s*+s2)  s2(s2+1)(s+1)
We decompose U(s) into partial fractions:

1 _A E Cs+ D F

2EING+D) s 2 241 syl

Multiplying both sides by the denominator s%(s* + 1)(s + 1), we get:
1=As(s*+1)(s+ 1)+ B(s*+1)(s+ 1)+ (Cs + D)s*(s + 1) + Es*(s* + 1).
Expanding and combining like terms, we have:
1=As'+ As® + As® + As + Bs®* + Bs> + Bs + B+ Cs' + Cs* + Ds* + Ds*> + Es' + Es”.
Grouping the terms by powers of s, we get:
1=(A+C+E)s*+(A+B+C+D)s*+ (A+ B+ D+ E)s*+ (A+ B)s + B.

Equating the coefficients of corresponding powers of s on both sides, we obtain the system of equa-
tions:

A+C+E =0,
A+B+C+D=0,
A+B+D+E=0,

A+ B=0,
B=1.

Solving this system, we find:
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A+1=0 = A=-1,
-1+C+E=0 = C+E=1,
-1+1+C+D=0 = C+D=0,
—1+1+D+E=0 = D+E=0.

From C+ D =0and D+ F =0, we get C = —D and E = —D. Substituting C' = —D into
C+FE =1, we get:

1 1 1
—-D-D=1—= -2D=1 = D:_i’C:_D:?E:_D:a
Thus, the partial fraction decomposition is:
11 is—1 1 11 s—1 1

U _ -4 2 2 2 4= _
G =St etem s s 2 T e T

We now find the inverse Laplace transform of each term:

£ [—1 =1,
S|
17
—1
E |:52_ - t,

[ os—1 1/, s _ 1 1 _
= [oity] =3 (6 ] -2 [a]) = gtest-smo
1

-1 1 _ L
2(s+1) 2

Combining these, we get the solution:

1 1
u(t) =—1+t+ §(COSt —sint) + §e_t.

Final Answer

1 1
u(t) =—14+t+ Q(cost —sint) + ie’t

Problem 2
Part (a)
Given the function:
(2) = ozt
24+ 522 447
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the poles of F(z) are the roots of the denominator 2* + 522 4+ 4 = 0. Factoring, we get:
452 4+4=(22+1)(22+4)

So, the poles are z = +i and z = +2¢. All of them are simple poles.

The inverse Laplace transform is given by the following integral (also known as Bromwich inte-
gral):

c L 1 y+ico .
H=L"1F = — *F d
R S

where v € R is chosen such that all the singularities of F'(z) lie to the left of the line Re(z) = . In
this case, we can choose any v > 0.

As we have seen this class, the way to compute this integral is schematically as follows: In order
to compute f]_tﬁ e*'F(z)dz as R — 400, we close the loop using a half circle to the left (i.e. the

curve § — Re' for 0 € kR 37”]), and then we compute the integral over the closed loop using the

reisdue theorem (note that this loop will contain, when R is large, all the poles of e"*F(z)). As
R — +o00, the integral over the half circle goes to 0 (this is why we chose to close the loop on the
left, since e** is uniformly bounded in the region Re(z) < v when ¢ > 0), leaving us with

O =L MFEY = oo [ TSR = Y Resy (¢4F(2),

2mi —100 2 poles of F

Residue Calculation

We calculate the residues at each pole.

¢ Residue at z = i:

' . +1 Li+1 e+ 1)
R z=1 ZtF =1 - *t - =e" -
e E) = =) ey T @ T 6
e Residue at z = —u:
' , +1 L il e 1)
R Zﬁ_i ZtF — l zt Z — it =
esa=—i(¢7F(2)) = M (2 4+ D e — ¢ ) 6i
o Residue at z = 2¢:
+1 v 2i+1 P2+ 1)
Res,_oi(e* F(2)) = lim (2 — 2i)e* ——— = e =
esa=i(€"F(2)) = (= = 20" e = ¢ @ —12i
e Residue at z = —2i:
. +1 L =2+ 1 e (=2 + 1)
Res.—_oi(e" F(2)) = li D [ — = e =
es,—_oi(e” F(2)) z$@2i(2+ iJe (22 +1)(22 + 4) € (—3)(—41) 127
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Summing the residues, we get:

eti+1) e i—1) e*(2i+1) e 2 (=2i+1)
f(t>_< 6 6 —1u 12

Combining the terms and using Euler’s formula e? = cos(f) + i sin(f), we finally obtain:

FE) = S cost+ L sint -+ cos2t — + sin 2t
= - —sint — = — —sin
3 €08 38 5 COs 55
Part (b)
We compute the inverse Fourier transform of
E+1
F(¢) = ,
= @rne+y

SO
§+1

1 o0 it
f(x):m/oo CETnern®

The integrand
E+1

(& +1)(& +4)

G. (5) = e

has simple poles at £ = 4+i and £ = +21.
We have seen how to compute the above integral before, as an application of the residue theorem.
We need to distinugish two cases, based on the sign of z:

e When z > 0, the function € is bounded on the upper half plane Im(£) > 0. In this case,
%df as R — +oo,' we close the loop with
a half circle on the upper half plane, namely the half circle § — Re®, § € [0,7]. This loop
is counter-clockwise oriented and will include only the poles at +¢ and +2i. So applying the
residue theorem (and using the fact that the integral over the half circle goes to 0 as R — +00),

we get:

in order to compute the integral fjlf el

1 oo 1 ,
f(fﬂ) = E /_OO G:ﬂ(f) df = E27” (Resz:+i<Gaz(Z)) + Resz:JrZi(Gx(Z))) :

Computing the residues similarly as in the case of part (a), we obtain for x > 0:

— (e “(i+1) e *(2i+1) <1+i . 1420, )
/() m( 6 —i "\ € 12 ¢

o When z < 0, the function €™ is bounded on the lower half plane Im(¢) < 0. In this case, in
order to compute the integral f _Jr}f: ei&m% d¢ as R — 400, we close the loop with a half
circle on the lower half plane, namely following the half circle § — Re=% 6 € [0, 7]. This loop
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is clockwise oriented and will include only the poles at —¢ and —2i. So applying the residue
theorem (and using the fact that the integral over the half circle goes to 0 as R — +00), we
get (note the minus sign coming from the clockwise orientation):

1 too 1
= — G,(&)dé = ———2mi (Res,—_; (G, + Res,—_9; (G, )
fla) = = | Gule)d = —=2mi (Res.(Gul) 4(Go(2)
Computing the residues similarly as before, we obtain for x < 0 (note in this case x = —|z|):
B ei—1) (=204 1)\ . (l—i . 142 _2|x)
f(z) = \/2m< 60 + 1% =27 (6 e +712 e :

So, overall:

Y

f*wwmz{ o

T @efx _ 1+2z6721> . T >
X

6 12
1 o] _ 1-2i 2]
2m (75 12 €

?

Problem 3

For each of the following functions f : [0, 1] — R, compute its Fourier series expansion in the form:

1
f(x)=zao+ >, (aycos(2anz)+ b, sin(2rnz))

2 neN\{0}
(a) f(z) = sin%(27z)
Use the trigonometric identity:

1 - 4
sin?(2mr) = cozs(ﬂx)
So, the Fourier series is:
1 1
flz) = 375 cos(4mx)

Hence:
ap=1, ay=-1, a,=0forn#2, b,=0foralln

(b) f(x) = xsin(2nz)

We compute the Fourier coefficients:
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Cosine coefficients a,: Using the identity:
1
sin Acos B = i[sin(A + B) +sin(A — B)]

we compute:

a, = 2/0 zsin(2mx) cos(2mna) de = /0 x [sin(2n(n + 1)x) + sin(27(1 — n)x)] dz

Using:
! 1
/0 zsin(2rkr) dx = 5%
(which follows simply by integrating by parts in sin(2rkz) = —ﬁ% cos(2mkx)), we get:
1 1 1 2n
¢ 7r<n+1+1—n) m(n? —1) or n 7
For n = 1:
! 1
a; = /0 xrsin(4drz) dr = I

Sine coefficients b,: Using:
1
sin Asin B = i[cos(A — B) —cos(A+ B)]
we find:
1 1
b, = 2/ xsin(27x) sin(2mnx) de = / x [cos(2m(n — 1)x) — cos(2m(n + 1)z)] dx
0 0
Since: )
/ x cos(2mkz) dx = 0 for integer k # 0
0

we have b, =0 for n # 1. For n = 1:

1 1

1

by = 2/ xsin®(2nx) dr = / x(1 — cos(4nzx)) dx = B
0 0

Final Fourier series for (b):
1
f(z) = zsin(2mzx) = %04 > ay, cos(2mnx) + 5 sin(27z)
n=1

with:
1 2n

—mfbfﬂ#l, bn:()forn#l
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(c) f(z) =

Zeroth coefficient:

1
CL[):/ e Tdr=1—¢!
0

Cosine coefficients:

! 2(1 — e
ap = /o e *cos(2mnx) dx = W
Sine coefficients: ) 1
4 1—e"
b, = 2/ e “sin(2mnx) dr = M
0 1+ (27n)?

Final Fourier series for (c):

l—et &2 [2(1-e) 4rn(l —e 1) |
flz) = z_: [1 FCEmE cos(2mnz) + T+ @) sin(2mnx)

Problem 4
Consider the initial value problem for the modified heat equation:

du 0%u oy

E(:L‘,t)—ﬁ(a: t) —au(x,t)=e* t>0, x€(0,1)

u(z,0) =0, z e (0,1)

u(0,t) = u(l,t) =0, t>0

Separation of Variables and Expansion

We seek a solution of the form:

Z b, (t) sin (nmx)

(this form satisfies the homogeneous Dirichlet boundary conditions; the justification for seeking such
an expression, as usual, is that we extend our functions as odd, 2-periodic functions of z € R, such
functions have only the sinuses terms present in the corresponding trigonometric expansion).

After extending the source term f(x) = e?* as an odd, 2-periodic function of z, we expand it in

a sine series: )
= fasin(nwz), f,= 2/ e **sin (nrx) d
n=1 0
The integral can be computedeasily, by integrating by parts twice:

2mn

e B (1 —e? COS(WH))

1
fo= 2/ e~ sin(nrx) dr =
0
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Substitute into the PDE
We substitute into the PDE:

oo

Z bl (t) sin (mnz) + Z by (t)m°n®sin (mnx) — a Y by(t) sin (mnz) Z fnsin(mnx)

n=1 n=1

This gives for each n:
0, (t) + (7*n* — a)by(t) = fo.

Recall also that, since our initial condition was u(x,0) = 0, we have
b,(0) = 0.

Solving the above (and noting that f, is constant in ¢, since f was constant in t), we get

—(m2n?—a)t

t
bn<t> — / e*(7r2n27a)(t78)fn ds = fn .
0

mn2 —q

Putting everything together:

> 2mn 1 — e—(7*n*—a)t
t) = = (1—e? . . g
u(zx,t) n;l g S ( e COS(?TTL)) 5, S (mnx)

Problem 5

Fourier Cosine Series Expansion

Since the boundary conditions are Neumann, we choose to extend our function u(x,t) and our source
term f(r) = e 2 as even, 2-periodic functions of x. This is because a C', even and 2 periodic
function h(z) will automatically satisfy the Neumann boundary conditions »'(0) = 0 = A’(1). In this
case, the trigonometric expansion of those functions will only contain cosine terms:

o0
Z ) cos (nmx)

u(z, t) =

(note that the basis elements, namely cos(nmz), automatically satisfy the Neumann conditions at
the boundary).
The source term f(z) = e 2%, when extended as above, is expanded in a cosine series as follows:

0= 55 (15

with coefficients: )
fo = 2/ e ¥ cos (nmx)dx for n > 0.
0
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Using the series for u(z,t) and f(z), we substitute into the PDE and equate coefficients:

! (ag(t) — aao(t)) + Z ( (7*n? — a)an(t)) cos (mnz) =

5 0+ Z fncos (mnz) .

2

Equating the corresponding coeffieicents of cos(nmz) for any n > 0, we get
a,(t) + (7°n* — a)a,(t) = fn.
Since our initial condition is that u(z,0) = 0, we have
a,(0) =0.

Solving the above first-order ODE, we get:

a,(t) = I (1 —e (”2”2_‘1)15) :

m™n2 —q

Problem 6 (Extra)

The n-moment of a function f : [0,+00) — C is defined by:
= [ s
0

Assume that all n-moments of f converge and

provided this integral converges.

sup/ t"|f(t)] dt < +oo.

neN JQ

We aim to prove that:

(1)
:ngo n!

The Laplace transform of f is defined as:

Clf)(=) = / Y

For any z € C, the Taylor expansion of e ** reads:
e—zt — Z )
n=0 n!

Substituting the above expression in the Laplace transform, we get

—+o00 +oo _

L[f)(z) = Z t)dt.

0
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Interchanging the sum with the integral, we get

too ptoo (_n too (o n +oo 400 (__1\n
ane =3 [T erwa =3 S [T a3 S

|
n: n=0 n=0

which is the required result.

Remark: The reason that we were able to exchange the sum and the integral was precisely our
assumption that
sup/ £ £(8)] dt < +o0.

0

neN

This allows us to apply the so-called dominated convergence theorem. Moreover, in this case, since

sup,, ftn < +o0, the series L[f](z) = 1% (_n1!)n w2 has infinite radius of analyticity; therefore,

L[f](z) is defined on the whole of the complex plane.
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